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— ABSTRACT

A theory of rotationally and vibrational ly inelastic collisions in

atom-diatomic molecule scattering is presented in which both rotations

and vibrations are treated semiclassically. The formalism, however,

allows for an unamb iguous specification of the initial and fina l quantum

states even though the S-matrix itsel f is calculated in the classical

lim it. This development is particularly suited to the description of

Inelastic collision processes among the highly excited rotational-

vibrational states which lie near the continuum.
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In the generalized phase shift, GPS, treatment of rotationall y

inel astic atom-diatom collisions , the S—matrix is transformed (through

a transformation involving vector coupl ing coefficients and representation

coefficIents) in such a manner that the indices describing the final

quantum states of the rotor are replaced by a set of Euler angles which

In the semiclassical regime become continuous. Here we present an

analogous treatment of the coupled rotational-vibrationa l problem . The

S—matrix which is label led by discrete indices describing the initial

and final vibrational and rotational states of the diatomic molecule is

transformed (through a similar transformation whi ch now involves , in

addition, the vibrational wave functions of the isolated diatomic

molecule) to one in which the indices associated with the fina l states

are replaced by three Euler angles, as in the GPS development, and a

continuous parameter associated with the vibrational motion. Thi s

parameter is the internuclear separation coordinate of the diatomic

molecule. The resul ting equations are especially suited to a

semiclassical analysis paralleling that given earlier1 for rotationally

inelastic scattering. Since the present development parallel s that in

reference 1 , equations of that paper are denoted by a prefix I, i .e.

Eq. (I- ).
This semiclassical development is believed to be wel l suited to the

description of vibrational transitions among the highl y excited states

of the diatomic molecule. In particular it is appl icable to such

probl ems as the termolecular recombination of hydrogen2 via the

mechanism 
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H+ H ÷ ’H ~

H~ + M ÷ H2 + M

The stabilization of the metastable H~ by collision wi th the third body

M (M = Ar, He, etc.) involves both vibrational and rotational

de-excitations within the levels close to the continuum.3 The

application of this semiclassical method to this probl em is currently

being investigated .

The problem considered is the nonreactive col lis ion of an atom and

a diatomic molecule interacting through a Born-Oppenheimer potential.

A center of mass coordinate system is chosen in which ~ is the vector

between the atoms comprising the molecule and r is the vector between

the atom and the center of mass of the diatonic molecule. The internal

state of the diatonic molecule is described by the wave function

Z(v~~~) Y~~~)

and is labelled by the vibrational quantum number v and rotational

quantum numbers 9~ and m . the Y~(~) are normal ized spherical

harmonics and the radial functions Z(vR.;~) are elgenfunctions of

the differential equation

+ + f~
2
~~(9+l ) - Eb(v~

)]Z(v&;
~
) = 0 . (1)

- —--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - — ~~~~~~ -———- —- --~~ - —~~~ ~~~~~~~~~~ -—- -~~~~~~~~~~~~~~ — 5-— . 5 - .
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In this equation M and V~ , respectively, are the reduced mass and

potential energy of the isolated diatomic mol ecule and Eb (E b < 0 ;

measured from the separated atom limit) is the binding energy of the —

molecule. These radial functions satisfy the completeness and

orthogonal ity conditions that

~ Z(v~;~)~ Z(v&;~~) = ~S(~-~’) (2)
V

and

J 

Z(v2~;~)~ Z(v’2;~)d~ = 

~vv ’ - (3)

An integration over continuum states is implicitly contained in the

completeness relation Eq. (2).

All of the information about the scattering process is contained

in a set of complex functions, Q~~~(~~X;S~r) , which satisfy the followi ng

pair of coupled equations;4

- - ~~ exp[iQ ~(~~X;SEr)] = i~j~j~ f dS’ d~’ dS” d~

F~~~(~X;S~S’~ ’;r) V~
1
~ (r~’0’) (4)

~F
( (~~X;S h1~~

t S 1
~~~;r)* exp[iQ~~~(~i~ ;S” E ”r)]

— F( (~LX;S$’~
flS1
~

I ;r)* exp[1Q~ (~~X;S”~”r)]}

This pair of equations is obta ined by suitably transforming those obtained

from an Integral equation based upon a separation of the total atom-

molecule interaction potential V(r~e) into elastic , V (0)(r) , and

inelastic , V~~~(r~O) , contributions. The angle 0 is that between the

_____
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vectors r and ~ . The matrix elements F ~(~X;S~S~~’;r) are

defined by

F ( ~X;S~S’~ ’;r) = ~ x(~X;v2XL;S~)* f~~~(vU;r) x(~X;v~AL;S ’~ ’)vR~XL (5)

in terms of the basis functions

1
x(~X ;v9.XL;S~) = ( f lL (8 2 ) [(2~+l)(2X+1 )(2L+1)] ”2

9.. ~ L fx X L (6)
~ (_ .j ) V+P D

~
’(S)

~ 
Z(v9.;E )* -

0 V V~~~ 0 ~ J U

The f~~~(vLA;r) are solutions of the radial wave equation involving only

the elastic part of the interaction potential . They are defined in

detail in reference 4.

The coupl ed equations , Eq. (4), may be written in a more compact

form by defining an operator ~~~ by its action on an arbitrary

function Y(c~) as

~~~ Y(c~) J F ~(~~;c2~2’ ;r) Y(c~’) dc~ , (7)

where ~2 stands for the combined indices S~ and d~l d~ dS . It

follows that

exp[iQ~~ J = -~9~ ~~~~~ ~~~~~~~ exp[iQ~~~] - ~~~ exp[iQ~~~)}

(8)

- - - -— .--5~~~~~~~~~~~—~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..l_~~~_~~~~~ _ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Another operator, G , is defined by

Y(~) = J G ( ~~;~Q’ ;r) V (~~) d~~~ , (9)

where

= ) x(i~;v9,AL;c1)* [~~ 
f~~~(vtx;r)] xUX;vUL;c~’) -

v9..AL
(1 0)

It follows imediately from these definitions that

= ~~~~~ ~~~~~~ = ~~~ F~~ ( 11)

and

~~~~~ ~~~~~~ = ~~~~~~ ~~~~ ( 12)

where a “prime” indicates differentiation wi th respect to r . The

equations for Q (+) 
and can be uncoupl ed to give the second

order differential equations5

Q - (
~ ~~~ 

Q) 2 
= 2U e ’

~ F F -l e’~

+ ~2 e~~~[ G + F ( ~~ ln  V~~~) F 
-l (13)

+ F G ~~~~~ F
’
I(-~~~ e~~) ~

where (to simplify the notation) the superscipts (±) have been omitted.

Thi s expression may also be written as

ih
2 -

~~ r Q - (t~ -
~~~~~ 

Q) 2 
= 2p e~~ V

(14)
+ ~~~~ e~~kG + U V~ + V G V~~]e~~ 

-
~~~~~ Q ,

—- ~~~~~~~~~
-
~~

- — —
~~~~~ ~~~~~~~~~~~~~~~~~ 5- . ~~~~~~~~~~~~

— — — - - - -—
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where U and V are two additional operators defined by

V = F v
( l )

F
_ 1 

(15)

and

U = F(~~~ - V ~~~~~ )F~~~ . (16)

Useful properties of the operators F and G are obtained in a

manner analogous to that di scusse d in reference 1. To this end ,
operators K and J are defined as

K = (2M ~~
2
) LL

1

2
+ L2

2 - L3
2 - 2 ~ K 2 ~~ L3~ L2 L3~3

— ~ 2 d2 (17)

and

J = M1
2 +M 2

2 - M 3
2 +2  ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ M 3

n M2 M3~ . (is)

The angular momentum operators , and M~ , are those used in I. The

factors K and J are given in terms of the initial angular momentum

quan tum numbers as

K = ~(~+l)~h
2 (19)

and

J = X (X+l )1i2 (20)

while ~ is defined in terms of the total initial binding energy of

the diatonic molecule , Eb (Eb < 0 ) , by

___  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -5- .—~~~~~~~~~~~
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= E~,(~~) - ~~~ ~
(~+l) . (21)

These K and 3 operators have the very interesting and useful

properties that 
~ is an eigenfunction of K* and J* wi th the

eigenvalues being the energy i nelasticity and the change in the relative

angular momentum, v iz.

K* x(~X;v~XL;S~) = -(E-~) x(~X;v~AL;S~) (22)
and

J* x(~X;vLAL;S~) = f2[x (x÷1 ) - X(X+l)) x(~X;v&XL;S~) . (23)

The energi es

= = Et - Eb (~~
) (24)

and

E = Et - Eb (v~
) (~5)

are the rel ative transla ti ona l energi es of the mo l ecul es before and
af ter a col li s ion; Et is the total center of mass energy.

The functions f~~ (vU~) centra l to the operators F and G can
be written in the form (see Eq. (1-39))

f~~~(v~A ) = (~~~
) exp[~ S~~~(vtX)] . (26)

The functions S~~~(vV~) , or dropping the superscripts, S(vtX)

depend on v, R~ and A only through the quantities E and A (A+l fli2 

- - --———5 T:~~~. ~~~~— - -~~~~~~ - - - - —  ~~~~~~~~~~ 
- --—5-5-- -— 

5—- .—— --
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Therefore, they may be expanded in a doubl e Taylor series about their

values at E = ~ and X (A+l )fi2 = J ;

S(v9..A ) = 

~ m i
1
n i Smn (E - !)m [x(x+l )f~2 — (27)

mn
where

m n
s = -~— -~---- S(~~~) . (28)mn ~ m ~jfl

These properties enable the integral operators F and G to be written

in differential forms. By the definition Eq. (8), F ac ti ng on an

arbitrary function Y(c2) is given by

F Y(~) = ~ x(~X;v~XL;~)* f(v9..X) f x(~X;v~AL;~2’) Y(~’) d~ ’
v9..XL

(29)

= ~~~~~~~ ~ x(~X;vZXL ;~)* ~~~~~~~~~ J x(~~;v~XL;~ ’) Y(~’) dQ’~ v9..AL

From the eigenvalue rel ations Eqs. (22) and (23) and the expansion

Eq. (27), it follows that

F Y(Q) = (~~~
)
~~ ~ x(~~;v~XL;~)* j

f Y (~’) exp[~ 
~ (..1)m s

~ vR..AL mn m.n .  mn

(30)
x(~A;v~AL; c~’ )ciQ’

Since the operators K and I are hermitian and the x( ;v~XL;~) obey

the completeness relation that

~ x(~~;v~AL;~)* x(~X ;vUL;c2°) ó(Q$2’) = ~(S-S ’) ~
(
~-~ ‘)

vQ~AL (31)

k 

— 

_  ‘~-— - —‘~~~~ 5- ..—-- -- -—--~~ —‘5——--, — ‘5 ..~ — ,~...5. ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 5- - - 55,5-55-rn
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Eq. (30) is equivalent to the expression

F Y(Q) = (f-) exp[~~S~ Y(ç~) , (32)

where

S = m!n! S 
f(fll 3n (33)

Because Y(Q) is an arbi trary function , F has the differential form

j
F = (

~
..-) exp[~-S] . (34)

Similarly, G can be expressed as

— 1 c~ I
—

A semiclassical solution to the equation for Q can be obtained

after suitabl e approximations are made concerning the operator F

First, the function 5Ic~ , defined by Eqs. (1-37 ) and (1-38), is

written in the series form

= + iii ~~0) - h2 40) + ... , (36)

where the s~° are given by Eqs. (1-53) through (1-56). In a similar

manner , the functions S~~~(v~X) [or S(vR.A) ] and the operators K

and I have the series representations

________________________________ _________________ -5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ .~~~_
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S(~~X) = ~ ( ili )~ Sn (37)
n=0

K = ~ (u i ) ’1 K~ , (38)
n=0

and

= 

n=i ~~~~ 
1

~~’ 
(39)

where

K0 
= V (~) 

- 

~(~) , 
(40)

2n+i 
— 

(1/2 n)!n !~f~
2
~~

1 M~~ 3 2 3 ‘ n —

(41)

— 1 , 2 2 2 1 d2
K2 

— - 
2MF 21i2 ~L1 + L2 

- L
3 ) 

+ 
~~~~~

- 

~~•2~ 
(42)

K2n = U ; n = 2,3,4,..., (43)

12n+l = 

51~~ ),~~~2n+l ~~~~ M 3
’1 M 2 M3

n 
; n = 0,1,2,...,

(44)

- 

~.i- (M 1
2 +M 2

2 -M 3
2) (45)

12n = 0 ; n = 2,3,4 (46)

The operator S defined by Eq. (33) may now be expanded as

= 

n~O 
( iii ) S,,~ (47)

each of the S,.~ , in turn , bei ng written as a finite series 

- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ----.- , -- . ---.-—---- —55---—— - 
.5 5-
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n
S S = ~~~~~~ (48)

k=O nK

Each operator Sflk is at most of order k in derivatives wi th respect

to angl es and the internal separation distance of the diatonic

molecule. Specifically, the first few terms are

= 

,n~O 
(
~~!

)m 
K0
m S,1 ,~ (49)

Snl = (1)m K0
m 
~~~~~~ ~l 

- Sn_l ,m+l ,O K1] (50)

and

Sn2 = 

m~O 
(
~~!
)m K0~[Y~ Sn~2 rn+2 O K1

2 
+ “2 Sn~2,m ,2 

11
2

- ~~~~~~ ,i .J
~ 

K1 + 5n-2,m ,l ~~ 
(51)

m rn-i
+ ~ (- 1) 

~ K K K m-4-l s
m~1 

rn! 0 2 0 n-2,m ,0

where

5 = (a )m (a )n 5 (52)
3E a

Except for the last term in S~2 , the infinite sums that appear in the

5nk have the effect of just replacing the initial translational energy

• which parameterizes the Sp rnn , by the effective energy

t 2ME~~ ~

IL . ‘— ~~~~~~~~~~~~~~~~~ 
- 5 ! !  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5-._-_-5— S _ 5 5 - 5 5 - _•~~~5- - 5 5 5 5 5 _~~~_ 5__ 5 • _ ! 5 5 _5-5._~~~_
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m~O 

~~~m K0
m 

~~~~~ ~ 
= 

m~O 
;! [V(~) - ~(~~j

m j~ 
S~~4~

J0 - 2M~
2 - v(~) - E)

m (..i)m 5fl,4,t

— 4. V =n,4~. ~~~~~~~ - - 
t1,4~t 2M~

2 ~~“1

In terms of the ~~~~~~ j ust defined3 the Sflk are given by

S~0 
= S(

~~n~~ 
= 

~~~~ 
‘ (54)

S~fl = 5
~~ n-i ,1,0 

K 1 + 
~~~~~~~~~~~~~~~~~~~~~~~ ~1i (55)

Sn2 
= S(~)~_2,~1 ~2 

+ V2 s(~)~_ 2 ,2,0 K1
2 

- S(~)~_2,l) 
K1 J1

+ ‘/2S(
~
)n..2q~ 

1

1

2 
- S(~~~~)~~~~~2 1 0  K 2 - ‘/2 S ( ~ ) n...2 ;o[K o~K 2] (56)

- ‘4S(~ )~_ 2 ,~~[K0,[K 0,K 2]]

where the results of the Appendix have been used in the expression for

S~2 . The expressions for S,~0 and S,~1 are identical in form to

Eqs. (1-68) and (1-69) wi th Sn,4t replaced by the corresponding

c-parametrized quantities S(E)
~~4t 

. The expression for S~2 contains

additional terms involving conunutators of K0 with K2

In this way, the central quantities that must be calculated for the

description of the full vibration-rotation inelastic scattering problem

are reduced to expressions similar to those arising in the rotation

problem alone. The difference is that now the generalized action

5- .5--.- —-,5-- -— 
.5 5 5 -5!
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integrals are parameterized by the internuclear separation distance of

the diatornic molecule. This only affects the effective translational

energy at which the generalized action integrals are evaluated.

Using the expansion , Eq. (47), one finds that

e~~
’ 

= [
~ (Th)

’
~ R~] ~~~~ e

_S1 
~~~~~~ (57)

and

~~~~~~ = ~~~~~~~ e
S1 e5’’[~ (~f1)

n l’n] . (58)

The operators Rn and are given by Eqs. ( 1—75) through ( 1—81 ) , but

once again the appropriate ~-pararneterized quantities must be used.

The problem is thus reduced to that of referenc e I and the further

analysis is not repeated here. The essential difference is that

the various quantities have an additional dependence on the variabl e ~

The result is that when Q is written in the semiclassical form

Q = ~ (fl.~) fl 

~n 
‘ (59)

the coefficients and Q1 satisfy the equations

(
~~ Q0)

2 
- G~~(~~ Q0) + 2p Voo = 0 (60)

and

2[G00- ( .~~ Q0)](~~~Q1) = -2p

(61)

+ {U~~ ~00+W00[011 ,v00]~~~00L~11 ,ö00]- 2G
1

}(
~~~~~~ Q

0
)

I
I

5.4
5- -S — .55 ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~
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The expressions for the quantities 0, (1 and (U are the same as those in I.

It is remarked once again that all of these quantities depend on ~
through the S(

~
)
~ ,4t which are central to their definitions. It

should also be noted that implicit in the expressions for G,

V and W is still given by

= v~
1
~(s’,~), (62)

but the angles ‘L’ and 0 used to specify the rotation S

5’ = (‘i~,~p,~r) S(Jr,O ,iT) , (63)

depend on ~ as well;

~
/2

= 

~
(
~

) = - 
~~~~~

— S(~)010 (64)

0 = o(~) = _2J”2 . (65)

To first order in the inelasticity, the solutions6 of Eq. (60) are

given by

~~~~~~~~~ = i n Z(~~;~)+ 2n(~~
)_
~ z f°If 

)(~~5~)I
2 V~~~(T~~~,~)dr ’

(66)

and

Q ( ~~~S~r) = ln Z(~~;~)+2r (~~)-~ j r If~~(~ X)I 2 V~~~(T~~~,~)dr’
r0(~)

- 

~4 J o 
If 0
~
(
~~)I 2 V t (T~~~,~)dr’ . (67)

S S S  S~~~~~ 5 ~~~~~~~~5 5 5 - 5 -  5. 5 5 _S 5 - 5 -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The rotations Tt
~~ are given by

= (ir ,~p(~),ir) S(ir ,O(~ ),ir) , (68)

and

= (~~~~~~~~~~~~ (~~~) - ~~~ (~~~),1T) S(1T,20~°~(~)- O(~),1r) , (69)

where ~(O)~~) and e00)(~) are the values of ~
p(
~) and e(~) at the

turning point r0(~) . The results Eqs. (66) and (67) may then be used

in Eq. (61) to generate the solutions Q~
’
~ and

Knowledge of the ~~~~~~~~ is sufficient to determine the

S—matrix (in an unusual representation)

(+), -~~ ~S(~~XS~) = u r n  e~
t
~ 

v S~, (70)

in which the initial state of the system is specified but the fina l

state indices are replaced by the ang les S and the dista nce ~

From this S-matrix , the transition amplitude , T(~~X;v LAL) , may

readily be determined ;

T(~~X;v9..AL) = S(~~.~OJvtXL ) - (-1) + (8w 2)

r (71)

J x(~LX;v9..AL;S~) S( XS~)d~ dS

These expressions , Eqs. (70) and (71), for the S- and 1-matrices are

exact but when combined with the previous results for Q(~~~S~)

provide an approximation in which the rotational-vibrational scattering

L I
~~~~~~~~~~~~~~~ 

1.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ 5 - --  --5-— . ..—— - -5  5 - -
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is treated in a semiclassical manner. Despite the semiclassical nature

of the development, the initia l and final quantum states are

unambiguously specified in the scattering amplitude.

‘ 5 .  -5-5 5 -  ! -5~~~~ -5. ! S ~~~~ -~~~~~~~ -‘-55
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APPENDIX

Since K0 and K2 do not conunute, the sums in the expression

m m-l
~ 

(-1) 
~
‘ K K K

m_4_ l S
m l  m! 

~~~~~ 
0 2 0 n-2,mO

(which is the last termin 5n2’ Eq. (51)) cannot be evaluated as in

Eq. (53). However, these sums may be evaluated in the following way;7

m—l , ~m t , ~t+lV V ~~~ K 4K K
m_4_ l S = ~ ~-l) K K Kt4 S

m~l 4=0 m! 0 2 0 n-2 ,mO 
~~0 4=0 (t+l)! 0 2 0 n-2 ,t+1,O

CO , ~p+4+1 4 P
= V ~~lj ‘o’~~ — K ~ —S4=0 p=0 (p.I~4+1)! . 4! 2 p! n-2,p+4+lp

3 4  a p
- r p 141 ~-K0 ~~~~~~~ 

K ~-K 0 ~~~~~~ S A 1— ( p.1.4+1)! 4! 2 p! n-2,l0 —

= J dcs(1-a)4 ~~ 
(-K 0 -~ .)4 

K2 

(-K0~~~)~ s~..2,i0

= — 1’ ( cz— 1)K 0(3/ 3~) Ke 2 n— 2 ,lO
0

where the substitution p = t-4 , the integral representation for the

beta function8 p14!/(p+4+1)! • and the definition of the ~~~~
Eq. (52), have been used. The integral is evaluated by defining a

conmiutator superoperator ~ as

I.. _____ 
~~~~~~~~~~~~~~~ 

-5——--  ‘:--=
~~~~~~

-
~~~‘
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= [K
0 ~ -,A] (A-2)

where A is any operator. It follows that

1
0 

da exp[(cz-l) K0 ~~]K2 exp[-a K0 ~
]

= exp[-K0 ~~
-] J~ 

e~~ dcz K2 A-3)

= exp[-K0 ~~
-] [ex.p()~~ - 1] 

K2

Since K2 is a second-order differential operator, the effect of

[ex p(~)- l]/~ on K2 may be evaluated explicitly with the result that

exp(~) - ~ K2 = K2 
+ Y~[K0,K 2]~~ 

+ 3’6[K0,[K0,K2]](~~)
2 

. (A-4)

These results together with Eq. (53) imply that

~~i JO 
(
~fl~!

)m 
K0
4 K2 K

m
~
4
~
l 5n-2,mO ~

S(
~

)n~2 1 o  K2
(A-5)

- 3~ S(E)~_ 2 ,20 [K0,K2] - ~f€ S(
~
)n_2,3ø[K0i[K0~K2]] 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-S



-- 
- - - 

-.

—- --5 - ---- —5- — - - - - — .. - - - -

19

REFERE NCES

* Research sponsored by the A ir Force Office of Scientific Research,

Air Force Systems Conunand, USAF, under Grant No. AFOSR-75-2850.

The United States Goverrunent is au thor ized to reproduce and

distribute reprints for governmental purposes not withstanding any

copyright notation herein.

t Present address: Department of Chemistry , Augsburg Col lege,

731 21st Avenue South, Minneapolis , Minnesota 55454.

1. C. F. Curtiss , J. Chem. Phys. 63, 2738 (1975).

2. The theory of hydrogen recombination has been discussed by many

authors . Among them are the following : D. L. Bunker , J. Chem. Phys.

32, 1001 (1960); J. C. Keck , ibid. 32 , 1035 (1960); R. E. Roberts ,

R. B. Bernstein, and C. F. Curtiss , ibid. 50, 5163 (1969); V. H.

Shui and J. P. Appleton , ibid. 55, 3126 (1971); R. T. Pack, R. L.

Snow, and W. D. Smith , ibid. 56, 926 (1972); P. A. Whitloc k,

J. T. Muc kerma n , an d R. E. Rober ts, Chem. Phys. Lett. 16, 460

(1972) and J. Chein. Phys. 60, 3658 (1974); V. H. Shui , J. Chem. Phys.

58, 4868 (1973); A. Jones and J. L. J. Rosenfeld , Proc. Roy. Soc.

A333, 419 (1973).

3. It was thought that rotational de—excitation was the primary

mechanism for the stabilization of metastable H2 [R. E. Roberts,

R. B. Bernstein , an d C. F. Cur ti ss, J. Chem . Phys. 50, 5163 (1969)],

but later investigations have revealed that vibrationa l and rotational

de-excitation are of comparable importance (P. A. Whitl ock, J. 1.

Muckerma n and R. E. Roberts, J. Chem . Phys. 60, 3658 (1974); N. C.

Blais and D. G. Truhiar , J. Chem. Phys. 65, 5335 (1976)].

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

___j
~

_ _
~--~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - -——555- 5-

- . 5. - - -- - -55--~~~~-—-- - -— -

20

4. C. F. Curtiss, J. Mol . Phys. 00, 0000 (1977). The radial functions

used in the present discussion differ from those used by Curtiss

by a factor of ~ ; Z(present)= ~ Z(former ).

5. This equation is analogous to that given by C. F. Curtiss,

J. Chem . Phys. 52, 4832 (1970); Eq. (30).

6. Solutions of Eq. (58) do not exist when ~ is a node of the

radial function Z(~~;~) . This , however , presents no difficulty

in appl ications of the theory.

7. R. F. Snider , 3. Math. Phys. 5, 1580 (1964).

8. A. çrd~1yi , Higher Transcendental Functions (McGraw-Hill Book Co., -
‘

Inc . , New Yor k, 1953), Vo l . 1, Chapter 1.

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-5 ‘S . k



-5- --S-S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- . -~~~~~~~~~ -

.

~~~~~

- ‘  
* C

— 
UNCLA SSI F IED

SECURITY CL~~SS Fi’ A TION OF T HIS m~~ 3E W’,~~ fl~ :a~~ ntrred~

REP~RT DOC ” EkITA ’rlJ
~~
IJ O A r E  READ INSTRUCTIONS 

-—

u urn i-~ ‘~ ‘ lul l C PW BEFGRC COMPLETING FORM
I. REPORT h U M D E R  GOVT ACC rSSICN NO. 3. pFcIe r,~.T .~ C A T A L O G  NUMB ER L~_:

~
PoSR.TR=78

~~
O l64 L _ _ _ _ _  _ _ _ _ _ _ _

4. TITLE (and SubtItle) . 5. T VF  E .)~ S~LPC.FsT & PERIOD COVERED

SEMICLASSICAL THEORY OF ROTATIONAL AND VIBRATIONA
EXCITATION IN COLLISIONS OF ATOMS WITH DIATOMIC
MOLECULES 6. P ER ~~O FtMING ORG. REP ORT NUMBER

7. A UT)~OR(a) —— 8. C O N t R A C T  O,~ GRANT NUMB ER(s) 
—

R. 0. Olmsted and C. F. Curtiss AFOSR GRANT 75-2850(/

9. P E R F O R M I N G  O R G A N I Z A T I O N  N A M E A N D  ADDRESS 
— 

IO. PP5C C P~~M F L E M ENT. PROJE CT . TASK
F W ORK UNIT NUMBERS

Theoretical Chemistry Institute - 
4University of Wisconsin-Madison 61102F 3

1101 University Avenue , Madison , Wisconsin 53706 ____________ -_____________

II. C O N T R OL L I N G  OFFICE N A M E  A N D  ADDRESS IL REPORT D A T E

Air Force Office of Scientific Research/NP 6 July 1977
BOLLING AFB, BLDG.#410 I~~~~N~J M 6 E P f l F PAG ES

WASH ~~ 20332 _________ 
~ 

g
IA. M O N I T O R I N G  A G E N C Y  N A M E  & ADDRESS(II diffe rent from Controlling Office) IS. SECURITY CLASS. (of thi, report)

UNCLASSIFIED
15a. DE C L A S S I F I C A T I O N / D O W N G R A D I N G

SCHEDULE

15. DISTRIBUTION STATEMENT (of this Report)

Approved ror pubite re1oas~ $
distrjb~~jo~ un1iniito~.

5 _ _ i~~ - .

17. OIST RI9UTION STATEMENT (of th. abstract entered In Block 20. If differen t Iron, Report)

18. SU P P L E M E N T A R Y  NOTES •

19. KEY WORD S (Cont inu e on rev.,., side SI necessary and ldentiiv by btock number)

I-

20. ABSTRACT (Continu. on r.v.r,. aid. II necess ary and identify by block number)

A theory of rotationally and vibrational ly inelastic collisions in atom-
diatomic molecul e scattering is presented in which both rotations and
vibrations are treated semiclassically. The formalism , however , a l lows for an
unambiguous specification of the initial and final quantum states even though
the S—matrix itsel f is calculated in the classical limit. This dv - lopment is
particularly suited to the description of Inelastic collision proc ~ s ~mong
thb hirlhlv ~vr~ifpt1 rnt.~t ir,n~ 1—vthr~ t i  ‘n~t 1  ~~~~~ ~.vI, j~-h i~~rs ~~~~~~~~~ +~

5 - -  ---,~~~~~-- -—-5- - ——— 5~~ 
--~~~.-S- 5 . - - 5--S 5 _ 5 -  -~~~~ - - _ _


